4.6 Elasticity of Demand

An important quantity in economics theory is the price elasticity of demand which measures the responsiveness of demand to a given change in price and is found using the formula

$$
\begin{aligned}
E & =\left|\frac{\text { percentage change in quantity demanded }}{\text { percentage change in price }}\right| \\
& =\left|\frac{\frac{d q}{q}}{\frac{d p}{p}}\right| \\
& =\left|\frac{p}{q} \cdot \frac{d q}{d p}\right|
\end{aligned}
$$

We will assume that increasing the price usually decreases demand and decreasing the price will increase demand so that $\frac{d q}{q}$ and $\frac{d p}{p}$ have opposite sign, that is, their ratio is always negative. Thus,

$$
\frac{\Delta q}{q} \approx-E \frac{\Delta p}{p}
$$

Changing the price of an item by 1% causes a change of $\mathrm{E} \%$ in the quantity sold.
If $E>1$ then this means that an increase (or decrease) of 1% in price causes demand to drop (increase) by more than one percent. In this case, we say that the demand is elastic. If $0 \leq E<1$ then an increase (decrease) of 1% in price causes demand to drop (increase) by less than one percent and in this case we say that the demand is inelastic.

Example 4.6.1

Raising the price of hotel rooms from $\$ 75$ to $\$ 80$ per night reduces weekly sales from 100 rooms to 90 rooms.
(a) What is the elasticity of demand for rooms at a price of $\$ 75$?
(b) Should the owner raise the price?

Solution.

(a) The percent change in price is $\frac{\Delta p}{p}=\frac{80-75}{75}=0.067=6.7 \%$ and the percent
change in demand is $\frac{\Delta q}{q}=\frac{90-100}{100}=-0.1=-10 \%$. Thus, the elasticity of demand is $E=\frac{0.1}{0.067}=1.5$.
(b) The weekly revenue at the price of $\$ 75$ is $100 \cdot 75=\$ 7500$ whereas at the price of $\$ 80$ the weekly revenue is $90 \cdot 80=\$ 7200$. A price increase results in loss of revenue, so the price should not be raised

Example 4.6.2

The demand for a product is $q=2000-5 p$ where q is units sold at a price of p dollars. Find the elasticity if the price is $\$ 10$, and interpret your answer in terms of demand.

Solution.

Using Leibniz notation we find $\left.\frac{d q}{d p}\right|_{p=10}=-5$ and for $p=10$ the corresponding quantity is $q=2000-50=1950$ so that the elasticity is

$$
E=\left|\frac{p}{q} \frac{d q}{d p}\right|=\frac{10 \cdot 5}{1950}=0.03 .
$$

The demand is inelastic at the given price; a 1% increase in price will result in a decrease of 0.03% in demand
Finally, we would like to know the price that maximizes revenue. That is, the price that brings the greatest revenue. Recall that the revenue function is given by $R=p q$ so that $\frac{d R}{d p}=q+p \frac{d q}{d p}=q\left(1+\frac{p}{q} \frac{d q}{d p}\right)$.
If $E>1$ then $\frac{p}{q} \frac{d q}{d p}<-1$ so that $1+\frac{p}{q} \frac{d q}{d p}<0$ and therefore $\frac{d R}{d p}<0$. This says, that increasing price will decrease revenue or decreasing the price will increase revenue. If $E<1$ then $\frac{p}{q} \frac{d q}{d p}>-1$ so that $1+\frac{p}{q} \frac{d q}{d p}>0$ and consequently $\frac{d R}{d p}>0$. This means that increasing price will increase revenue. Finally, note that if $\frac{d R}{d p}=0$ then $E=1$. That is, $E=1$ at the critical points of the revenue function. See Figure 4.6.1.

Figure 4.6.1

